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Abstract
The promise of multi-task learning is that optimizing a single model on multiple related tasks
will lead to a better solution for all tasks than independently trained models. In practice, opti-
mization difficulties, such as conflicting gradients, can result in negative transfer, where multi-task
models which perform worse than single-task models. In this work, we identify the optimization
temperature—the ratio of learning rate to batch size—as a key factor in negative transfer. Tem-
perature controls the level of noise in each optimization step, which prior work has shown to have
a strong correlation with generalization. We demonstrate that, in some multi-task settings, nega-
tive transfer may arise due to poorly set optimization temperature, rather than inherently high task
conflict. The implication of this finding is that in some settings, SGD with a carefully controlled
temperature achieves comparable, and in some cases superior, performance to that of specialized
optimization procedures such as PCGrad, MGDA, and GradNorm. In particular, our results suggest
that the significant additional computational burden of these specialized methods may not always
be necessary. Finally, we observe a conflict between the optimal temperatures of different tasks
in a multi-task objective, with different levels of noise promoting better generalization for differ-
ent tasks. Our work suggests the need for novel multi-task optimization methods which consider
individual task noise-levels, and their impact on generalization.

1. Introduction

Multi-task learning (MTL)—the simultaneous optimization of multiple related tasks—has a long
history in machine learning [1]. Modern deep learning has enabled multi-task learning in new
applications and settings, such as estimating a shared policy across multiple Atari games [8], or
segmenting and classifying regions of images to improve medical diagnoses [24] and autonomous
driving [6]. Biasing a learner towards solutions that address multiple tasks can yield individual task
predictors that generalize better to unseen data, and potentially mitigate underspecification [5] when
considering a diverse but sufficiently related set of tasks.

Conceptually, multi-task learning benefits from considering multiple objectives jointly, but in
practice these objectives may be at odds with one another, leading to multi-task models which
generalize worse than single-task models, a phenomenon known as negative transfer [25]. To
address negative transfer, prior work in multi-task learning has focused on mitigating task conflict:
significant differences between the gradients of individual tasks [3, 26, 32, inter alia]. Although
task conflict is a defining characteristic of multi-task learning relative to single-task learning, large
amounts of conflict between task gradients can negatively impact optimization, and may signify an
incompatibility between the tasks being learnt. This relationship remains poorly understood; how
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much task conflict is too much, and even how to meaningfully measure task conflict, remain under
explored questions.

Despite the open questions about the role of conflict in MTL, there are some cases where it
is possible to identify when conflict will hurt generalization, such as when conflict between tasks
yields a sub-optimal model from the perspective of a task’s training objective. For example, high
directional task conflict can cause SGD to get stuck in a poor local optima, preventing further
minimization of the training loss [32]. In such a setting, negative transfer may arise due to tasks
being under-fit, an artifact that is not specific to multi-task learning but is instead a result of poor
optimization. Prior work in multi-task learning has focused on producing methods that attempt to
mitigate negative transfer by preventing such artifacts of optimization. PCGrad [32] aims to prevent
optimization from getting stuck in poor local minima, allowing training to continue minimizing the
training loss of each task. Other methods like GradNorm and MGDA are motivated by the need
to balance task losses, preventing any one task from dominated the learning trajectory, preventing
other tasks from being under-fit. These methods share the perspective that negative transfer can be
mitigated by preventing optimization from under-fitting or over-fitting the training objective.

In this work, we explore the role of gradient noise on negative transfer in multi-task learning.
Specifically, we aim to understand when negative transfer may arise due to poor temperature, rather
than significant task conflict. Recent studies on the dynamics of single-task stochastic gradient de-
scent in neural networks have identified a relationship between generalization and the ratio of the
learning rate and batch-size, termed the temperature of SGD [12, 23, 28, 29]. The temperature
may be understood as regulating the level of noise in the gradient step taken during each iteration
of SGD. Empirically, neural networks with small batches or large learning rates, i.e. high temper-
atures, have been shown to generalize better than low temperature models, despite minimizing the
training loss equally well [7]. In the multi-task setting, we explore to what extent negative trans-
fer may be attributed to poorly selected temperatures, rather than high amounts of task conflict.
Our contributions are as follows: (1) We find that the Uniform Average objective, a common ob-
jective in multi-task learning, can have a significant effect on the noise of the multi-task gradient,
and demonstrate that accounting for this when setting the temperature mitigates negative transfer in
some common multi-task benchmarks; (2) We observe that, for a single multi-task objective, differ-
ent temperatures may favor generalization on different tasks. This finding suggests a novel from of
multi-task conflict, at the noise level of the gradient. Overall, our work highlights the importance of
the connection between temperature and negative transfer when optimizing multi-task models.

2. Background & Related Work

2.1. Negative Transfer & Multi-Task Optimizers

To properly address negative transfer, prior work in multi-task learning has largely focused on pro-
ducing specialized multi-task optimizers [SMTOs, 18] which aim to mitigate task conflict during
training. Although these methods are largely motivated by generalization performance, i.e. nega-
tive transfer, they often directly target ways to improve optimization of the training objective. For
example, MGDA [26] aims to find a pareto-stationary solution in the training landscape, such that
no task loss can be reduced without increasing another. GradNorm [3] aims to learn task weights
such that tasks are learned at similar rates, so no task can dominate the optimization objective. Yu
et al. [32] show that, under certain conditions, multi-task optimization can converge to poor local
minima, and propose PCGrad as a method to prevent such conditions. The hypothesis of the SMTOs
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listed above is that the training objective of the tasks being considered are tied to negative transfer;
better minimizing each task’s training loss will reduce negative transfer.

However, directly mitigating conflict between the direction and magnitude of task gradients may
not be necessary to mitigate negative transfer. Lin et al. [21] showed that randomly weighting tasks
throughout training could achieve impressively strong multi-task models, which outperform several
conflict mitigation methods. Recently, Kurin et al. [18] found that many SMTOs may behave as reg-
ularizers; replacing conflict mitigation with L2 regularization can often achieve comparable results.
In this work we examine the extent to which negative transfer may arise to due an improper amount
of noise in the gradient step, rather than significant conflict in gradient directions or magnitudes. Im-
portantly, the connection between noise and generalization is not observable from the perspective
of the training objective, suggesting the need for a new perspective in multi-task optimization.

2.2. The Temperature of SGD & The Linear Scaling Rule

It has long been thought that a small batch-size is key to neural network generalization [20]. Keskar
et al. [16] identified that large-batch models converge to “sharper” minima than small-batch models,
which had previously been tied to worse generalization [9]. However, Goyal et al. [7], Keskar et al.
[16] demonstrated the linear scaling rule: by scaling the learning rate linearly with respect to the
batch-size, one could achieve good generalization with large batch-sizes. Smith and Le [28] inves-
tigated SGD dynamics as a stochastic differential equation and found that the underlying variable
influencing the convergence to sharp or flat minima was not batch-size, but rather the noise-scale of
SGD, also known as the temperature of SGD, characterized as T = ϵ

B , where ϵ is the learning rate
and B is the batch-size. They argued that successful generalization depends on finding an optimal
T for the given problem, which has been corroborated in other studies [13, 23, 27]. While some
works have justified this connection theoretically, demonstrating the preference of a noisy optimizer
towards flat minima [11, 27, 31], other work has empirically shown that common measurements of
flatness are not necessarily correlated with temperature or generalization [14]. Despite our inconsis-
tent understanding of this phenomena, it is clear that the connection between T and generalization
plays an important role in deep learning.

3. The Optimization Temperature of Multi-Task Problems

3.1. The Noise of the Multi-Task Objective

In multi-task learning we assume K tasks each consisting of labeled examples {(x(k)
i , y

(k)
i )}Nk

i=1

for k = 1, 2, . . . ,K, where Nk is the number of examples for the kth task. We assume that the
input space X is the same for all tasks, and each task has a task-specific output space Yk. Tasks are
modeled using a neural network fθ : X → RD where the parameters θ are shared across all K tasks.
To obtain task-specific predictions, we introduce projections hϕk

such that hϕk
◦ fθ : X → Yk. We

write the loss function of the kth task as ℓk and let Θ = (θ, ϕ1, . . . , ϕK). Then the uniform multi-
task loss (UMTL) is defined as:

L(Θ) =
1

CB

K∑
k=1

B∑
i=1

ℓk((hϕk
◦ fθ)(x

(k)
i ), y

(k)
i ) (1)

where x
(k)
i are sampled uniformly at random with replacement from Dk with a mini-batch size of

B. C is a hyper-parameter which determines the scaling of the UTML. The role of C is of primary
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Figure 1: Different settings of C can yield solutions which equally minimize the training objective,
but generalize in significantly different ways. Here we see multi-task CIFAR-100 and CelebA
models trained with the Uniform Multi-Task Objective. A setting of C = K (averaging task-
gradients) incurs significantly higher negative transfer than a setting of C = 1 (summing task
gradients), despite either method minimizing the training objective.

interest in this work, as it has a significant effect on the covariance of the multi-task gradient. Let
Gk,θ be a random variable representing the gradient of a single sample ∇θℓk(x) : x ∼ Dk given
model parameters θ – then the noise of task k is described by Σ(Gk,θ). Let Gθ = 1

C

∑K
k=1Gk,θ

represent the multi-task gradient as a sum of random variables. Then, assuming x ∼ Dk is sampled
independently from all other k, the multi-task noise can be written as

Σ(Gθ) =
1

C2
Σ(G1,θ) + · · ·+ 1

C2
Σ(GK,θ) =

1

C2

K∑
k=1

Σ(Gk,θ) (2)

We therefore have the following relationship: the multi-task gradient covariance scales with the
number of tasks and scales inverse-quadratically with C. When C = K, yielding the Uniform
Average multi-task objective, the noise of the gradient is the sum of individual task variances divided
by K2. A more principled choice may be C =

√
K, which would result in the multi-task noise being

the average single-task noise. Nearly all multi-task work considers some variant of the UMTL as a
baseline, often with C = K or C = 1, although few provide justification for their choice.

3.2. The Uniform Multi-Task Objective

We now empirically examine the effects of C on negative transfer in multi-task models. The Uni-
form Average Multi-Task objective (C = K) is a common objective in multi-task literature [15,
21, 26, inter alia], often used to motivate the need for more sophisticated methods which mitigate
conflict between tasks. However, C = K reduces the gradient noise to a fraction of the average task
covariance; here we ask if this can be responsible for significant negative transfer. In Figure 1 we
plot the training loss and validation performance of multi-task ResNet-18 models on CIFAR-100
and CelebA for C = 1,

√
K, and K, with the optimal single-task learning rate and batch-size.1

1. For details regarding the models and hyper-parameters for each setting, please see App. A.
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From the perspective of the training objective, C has little impact on optimization, as all models
equivalently minimize the training loss. However, the uniform average multi-task objective exhibits
significantly higher “negative transfer” than the uniform sum multi-task objective (C = 1). Inter-
estingly, this suggests a linear scaling rule for multi-task learning, e.g. the gradient should scale
linearly with the number of tasks. Because we use the optimal single-task temperature, our results
suggest that setting C = 1 significantly reduces the need for broad hyper-parameter sweeps when
the best average single-task optimization temperature is already known.

In Figure 2, we examine negative transfer in CIFAR-100 (a) and CelebA (b) ResNet18 models
using the uniform average objective (C = K). We plot average task test performance in single-
and multi-task models for a range of optimization temperatures (in App. C we provide similar plots
for individual tasks). We find that temperatures which are optimal for single-task models exhibit
strong negative transfer in multi-task settings. However, scaling the temperature by the number
of tasks, which has the same effect as setting C = 1, again largely mitigates negative transfer.
Indeed, in Figure 2 (c) we compare single-task models to multi-task models trained with the Uni-
form Average objective, as well as multi-task models trained with the PCGrad [32], MGDA [26],
and GradNorm [3] SMTOs, on CIFAR-100. We find that, for the optimal single-task temperature
(a low learning rate), the uniform average objective exhibits strong negative transfer, and SMTOs
are highly beneficial. However, when the temperature is appropriately scaled, the uniform aver-
age objective is more competitive, generalizing comparably to the SMTOs. We provide additional
discussion and results for CelebA and MNISTS datasets in App. B.

Our results do not suggest that conflict is not a problem in multi-task learning, nor that SMTOs
are unnecessary—indeed we see that they still improve performance on CelebA—but rather suggest
that the role of conflict in negative transfer has been overestimated due to a lack of attention given to
other artifacts of optimization such as temperature. Such a finding is inline with the results of Kurin
et al. [18], who similarly show that SMTOs may provide benefits largely as a form of regularization,
a benefit which can be replicated through stronger L2 regularization using a vanilla SGD optimizer.

4. Different Tasks Have Different Optimal Optimization Temperatures

In Section 3 we explore how optimization temperature may cause negative transfer from the per-
spective of the average task performance. However, a more fine-grained view of task generalization
across different temperatures (App. C) reveals a surprising phenomenon: different temperatures may
generalize better or worse for different tasks. This is surprising because all models share the exact
same objective (the uniform average loss) and minimize the objective equally well. We corrobo-
rate this finding on the Cityscapes dataset, a 3-task dataset with significant noise disparities, using
pre-trained in Figure 3. Here we see that each task individually benefits the most from a unique tem-
perature, despite the objective remaining constant; depth estimation generalizes best with a learning
rate of 0.002, yet instance segmentation generalizes best with a learning rate of 0.005. We empha-
size again that each model minimizes the training objective equivalently. However, the noise of the
gradient step clearly biases the model towards generalization on certain tasks over others.

This result also suggests that there exists a conflict between the preferred temperature of opti-
mization of tasks in a multi-task model. In principle, the trade-off between task generalization is
not desirable; it would be preferable to find a single solution that exhibits equally optimal general-
ization properties for all tasks simultaneously. To the best of our knowledge, we are the first to note
on this particular type of noise conflict between tasks in a multi-task setting. Our results suggest the
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Figure 2: (a) & (b): On CIFAR-100 and CelebA, negative transfer can be associated with a poorly
set optimization temperature, rather than an inadequate training objective. Average task gener-
alization can attain comparable or even better performance than single-task performance when the
temperature is scaled by an appropriate factor. On CelebA, the highest temperature is so sub-optimal
for single-task models that they often perform near random chance. (c): At optimal single-task tem-
peratures, SMTOs often outperform the uniform average baseline. However, at higher temperatures,
the uniform average baseline can attain competitive performance to most SMTOS.
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Figure 3: Different temperatures promote better generalization for different tasks in the Cityscapes
dataset. A learning rate of 0.002 finds the best performance for semantic segmentation, yet a learn-
ing rate of 0.005 finds the best generalization from the perspective of instance segmentation. We
note that all models achieve equal loss from the perspective of the training objective; thus different
noise levels are biased towards generalization on different tasks.

need for novel multi-task optimizers which can address disparities in the optimal temperatures for
different tasks in a single model.

5. Conclusion

In this work we identify temperature as a key factor in negative transfer in several common multi-
task benchmarks. We show that, when the optimization temperature is carefully considered, negative
transfer can be mitigated through the relationship between optimization temperature and general-
ization in deep learning. Our results highlight the importance of considering different factors of
optimization when evaluating the causes of negative transfer; in particular, we show that vanilla
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SGD with the uniform average objective is a stronger baseline that previously believed, a finding
corroborated by Kurin et al. [18]. Finally, we observe a conflict between the optimal temperatures
for different tasks in a multi-task model, which yields ways to bias multi-task optimization towards
certain tasks without changing the objective. More importantly, however, it highlights a novel di-
rection for future work in multi-task optimization, demonstrating the need for methods which can
mitigate discrepancies between the optimal noise-levels of each task in a single model.
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Appendix A. Experiment & Dataset Details

A.1. CelebA

Data: The CelebA dataset [22] is a dataset consisting of over 200,000 images of celebrity faces.
Each image is annotated with 40 distinct, binary characteristics, ranging from objective facial at-
tributes, such as nose size and hair color, to highly subjective attributes, such as whether or not the
celebrity is attractive or chubby. In a multi-task setting, each attribute is treated as a separate binary
classification task. We use CelebA’s standard training, validation and test splits, which consist of
162, 770 training images, 19, 867 validation images, and 19, 962 test images. We additionally resize
all images to RBG images of size 64× 64. CelebA severely suffers from class imbalance – several
classes are largely positive or negative. As such, we often opt to report F1, rather than accuracy, as
it more accurately represents the models true generalization capabilities. Model: For our CelebA
experiments we use a ResNet-18 architecture. In the multi-task setting, all but the ultimate layer
parameters are shared across all tasks. For task-specific classification we take the output of the
penultimate layer and feed it to task-specific linear binary classifier. In the single-task setting, each
task is learnt with an independent ResNet18 model. The model is trained with a batch-size of 256
for 25 epochs. We found the optimal temperature in the single-task setting to be a batch-size of 256
and a learning rate of 0.02, and using SGD with a momentum coefficient of 0.9.

A.2. CIFAR-100

Data: The CIFAR-100 dataset [17] consists of 60,000 32× 32 RGB images, each of which belongs
to a coarse and fine-grained class. In the multi-task setting, each coarse-grained class is treated as
a separate task, which is itself a multi-class classification problem among the fine-grained classes
that make up that coarse-grained task. In this sense, CIFAR-100 is a multi-source multi-task dataset,
in that each task has its own domain of images associated with it, and no image is labeled for
more than a single task. Each coarse-grained class is associated with exactly 5 distinct fine-grained
classes, and thus each task is a 5-class classification problem. The dataset is split such that each
task (coarse-grained class) has 2,500 training images and 500 test images. This corresponds to
500 training images and 100 test images per fine-grained class. We take a random sample of 500
images per task from the training set to construct a validation split. This results in 40,000 training
images, 10,000 validation images, and 10,000 test images in the full multi-task setting. Model:
For our CIFAR-100 experiments we use a ResNet-18 model. In the multi-task setting we take the
output of the penultimate layer and feed it to task-specific linear softmax classifiers, sharing all
layers below across all tasks. In the single-task setting each task is learnt with an full, independent
ResNet18 model. All models are trained with a batch-size of 16 for 75 epochs. We found the
optimal temperature in the single-task setting to be a batch-size of 16 with a learning rate of 0.004,
and a learning rate decay of 0.99 using SGD with a momentum coefficient of 0.9.

A.3. MNISTS

Data: The MNISTS dataset [10] consists of 3 MNIST-like datasets, each consisting of 50,000
28 × 28 greyscale training images, and 10,000 validation and test images. Each dataset is a multi-
class classification dataset. MNIST [19] is the canonical handwritten digit recognition dataset,
and consists of classifying images of individual digits as 0 − 9. FashionMNIST [30] is similarly
a 10-class classification problem, consisting of greyscale images which must be classified as one
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of T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot. Finally,
NotMNIST (https://www.kaggle.com/lubaroli/notmnist) is a dataset consisting of
images of individual letters, pulled from a large variety of fonts. The dataset is a 26-class classi-
fication dataset where the task is to classify each image’s letter, a-z. Model: We use the LetNet
architecture for our MNIST experiments. This model shares 2 convolutions layers, followed by a
shared feed forward layer. The representations from this model are fed into 2 task-specific feedfor-
ward layers, the first with a relu activation, and the second with a softmax output as the classifiers
prediction. Our model uses a dropout rate of 0.5 in all layers. We found the optimal temperature
in the single-task setting to be a batch-size of 32 and a learning rate of 0.001, using SGD with a
momentum coefficient of 0.9.

A.4. Cityscapes

Data: The Cityscapes dataset [4] comprises 5,000 images of urban streets. Each image contains
pixel-level annotations for semantic segmentation, instance segmentation of people and cars, and
depth (‘disparity’) labels; these are considered to be three separate tasks. We train on the training
set of 2,975 images and report each task metric on the validation set of 500 images after each epoch.
All images are downsized to 128 × 256. For the instance segmentation task we follow the setup
of Sener and Koltun [26] and train and evaluate on the proxy task of estimating the center of mass
of each pixel. Model: Our experiments on Cityscapes uses a DeepLabV3 model Chen et al. [2],
which consists of a pre-trained dilated ResNet50 model, followed by task-specific Atrous Spatial
Pyramid Pooling layers. We use a batch-size of 16, and we optimize with Adam with default hyper-
parameters.

Appendix B. SMTOs on CelebA and MNISTS

Here we provide additional results and discussion on comparing SMTOs to the uniform average ob-
jective across a small set of temperatures in Figure 4. On CIFAR-100, we see in the low-temperature
regime that the uniform average multi-task objective incurs heavy negative transfer. Additionally,
in this regime conflict mitigation methods are very impactful, and can mitigate negative transfer
significantly. However, in the high temperature regime, the uniform average objective suffers very
little negative transfer. In this regime, SMTOs provide very little benefit over the uniform average
objective. On the MNISTS dataset, we see a similar story; SMTOs are very beneficial over the
uniform average objective in low temperature regimes, but their benefit drops in high temperature
regimes.

In the CelebA dataset we see a different story – here, SMTOs retain large benefits over the
uniform average objective even in the high temperature regime. Kurin et al. [18] found that typical
models for CelebA over-fit, and that SMTOs could act as an explicit form of regularization (i.e. they
prevent minimization of the training loss). Regardless, CelebA provides a concrete setting where
SMTOs can improve performance over the uniform average objective even when the temperature
is treated appropriately; This suggests that conflict mitigation is not entirely unnecessary in multi-
task learning. However, taken all together, this section suggests that we should be careful when
employing expensive conflict mitigation methods before making sure that the baseline (UMTL) is
appropriately optimized.
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Figure 4: Average task test results on CIFAR-100 (a), CelebA (b), and MNISTS (c) datasets
for single-task models, uniform average multi-task models, and models trained with GradNorm,
MGDA, and PCGrad, over a small set of temperatures. Note that, due to the high computational
cost of running SMTOs on the full CelebA dataset, we consider a random subset of tasks here.
We see that in low temperature regimes SMTOs largely outperform the uniform average baseline.
However, when the temperature is set appropriately high, the benefits of SMTOs on MNISTS and
CIFAR-100 largely disappears.

Appendix C. Full Task Scaling Plots for CIFAR-100 & CelebA
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Figure 5: Full results from every task considered in CIFAR-100, in single- and multi-task settings.
We see that the single-task optimal temperature is significantly sub-optimal in the multi-task setting,
compared to temperatures scaled by a factor of 10 to 20.
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Figure 6: Full results from every task considered in CelebA (tasks 1-20), in the single- and fully
multi-task settings. Similar to CIFAR-100 and MNISTS, we see a significant amount of homogene-
ity in these graphs, suggesting that independent tasks have similar levels of gradient noise, and that
averaging tasks together uniformly lowers gradient noise of SGD.
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Figure 7: Full results from every task considered in CelebA (tasks 21-40), in the single- and fully
multi-task settings. Similar to CIFAR-100 and MNISTS, we see a significant amount of homogene-
ity in these graphs, suggesting that independent tasks have similar levels of gradient noise, and that
averaging tasks together uniformly lowers gradient noise of SGD.
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